Dyes in Early Northern Europe.

THEY WORE COLOR?

A presentation at Collegium Caidis 2014 by THL Meave Douglass
meavedouglass@gmail.com
So when exactly are we talking about?

- **Roman Empire**-
 - 753 BCE - Kingdom
 - 504 BCE - Republic of Rome
 - Empire - 27 BCE

- **Migration Period** - Approximately 400-700
 - Visigoths 357-410
 - Vandals 406-439
 - Huns 370-451

- **Viking Age** - Approximately 800-1100
Geographically, they lived throughout Northern Europe in what we now call Norway, Sweden, Denmark, Finland, and Northern Germany.

Viking settlements were also to be found along the coasts and river-ways of Ireland, the British Isles, Scotland, Iceland, and the Baltic.

The settlements in northern and eastern England (including the city of Jórvík, or modernly York) comprised what is known as the Danelaw. In general, settlers to the Danelaw originated in Denmark and Norway.

In Ireland, they founded the city of Dublin.

The Danes along with the Swedes also ventured east, trading and settling along the Baltic. It is generally accepted that the Rus have Swedish origins.

We know Scandinavian traders during the Viking Age also had contact with Byzantium and the Mediterranean.
Colorants, and mordants, and modifiers oh my!

- **Fugitive** - really more of a stain
- **Permanent** - chemically bond with the fiber
 - **Substantive** - chemically fixed to the fiber on their own
 - **Adjective** - need some help from another substance such as tannin or alum. These are called *mordants*, and are usually metals.
- They actually have found non-native clubmoss, an aluminum absorbing plant, at York. It was most likely imported as a mordant.
Color Variations

- Depending on the *mordant* you use, the color will change. For example, iron will *sadden*, or dull, the color.
- Factors such as pH can also be adjusted using *modifiers* such as calcium carbonate and will change the color. For example, soda ash will brighten the yellow weld gives.
- All wool is not white.
- The length of time and amount of fiber to dyestuff ratio in a pot will change the color.
- The range of colors possible is also increased with overdyeing.
They wore color? But everything looks brown!
Challenges

- There are no contemporary written descriptions that describe textile color.
- Contemporary art tends to be representational and not in color.
- Extant textiles have been damaged and altered by soil and excavation methods.
- Soils tend to be rich in mordants such as tannin, which turn things brown.
- Some dyes are fugitive, and have long since faded from the textiles.
- Dye identification methods can be destructive.
For Science! (Or how we know what we think we know.)

- Dye Identification by Chemists
 - TLC (Thin Layer Chromatography)
 - HPLC (High-Pressure Liquid Chromatography)
 - FTIR (Fourier Transform Infrared Microscopy)

- Identification of botanical remains by archeobotanists
 - Seeds
 - Stems and leaves
Ok, so what colors did they use?

<table>
<thead>
<tr>
<th>Dyestuff</th>
<th>Common Name</th>
<th>Chemical Colorant</th>
<th>Color/Colors Given</th>
<th>Archeological Evidence Found</th>
<th>Geographic Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isatis tinctoria</td>
<td>Woad</td>
<td>Indigotin</td>
<td>Blues, Greens</td>
<td>Seeds, Wool, Linen, Silk</td>
<td>Norway, Denmark, York, Sweden, Dublin</td>
</tr>
<tr>
<td>Reseda luteola</td>
<td>Weld, Dyer’s Rocket</td>
<td>Luteolin</td>
<td>Yellows, Golds</td>
<td>Seeds, Silks</td>
<td>York, Sweden</td>
</tr>
<tr>
<td>Rubia tinctorum</td>
<td>Madder</td>
<td>Alizarin, Pseudopurpurin, Purpurin</td>
<td>Oranges, Reds</td>
<td>Plant Remains, Wool, Silks, Linen</td>
<td>Norway, York, Denmark, Sweden, Dublin</td>
</tr>
<tr>
<td>Gallium boreale, Gallium verum, Gallium aparine</td>
<td>Bedstraw, Lady’s Bedstraw</td>
<td>Alizarin, asperuloside</td>
<td>Reds, Yellows</td>
<td>Wool</td>
<td>Norway, Denmark</td>
</tr>
<tr>
<td>Juglans regia</td>
<td>Walnut</td>
<td>Juglone, Tannin, Plumbagin</td>
<td>Browns, Tans</td>
<td>Wool, Plant Material</td>
<td>Norway, Denmark</td>
</tr>
<tr>
<td>Xanthoria parietina, Rocella tinctoris</td>
<td>Wall Lichen</td>
<td>Orecin</td>
<td>Yellows, Tans, Reds, Purples</td>
<td>Wool, Silk</td>
<td>Dublin</td>
</tr>
<tr>
<td>Ochrolechia tartarea</td>
<td>Orchil Lichens</td>
<td>Orecin</td>
<td>Purples/Pinks</td>
<td>Wool</td>
<td>York, Northern Germany, Dublin</td>
</tr>
<tr>
<td>Calluna vulgaris</td>
<td>Heather</td>
<td>Flavonols: Quercetin & Myricetin</td>
<td>Yellow</td>
<td>Plant Material</td>
<td>York</td>
</tr>
<tr>
<td>Genista tinctoria</td>
<td>Broom, Dyer’s Greenwood, Woadwaxen</td>
<td>Genistein</td>
<td>Yellow</td>
<td>Plant Material</td>
<td>York</td>
</tr>
<tr>
<td>Nucella lapillus</td>
<td>Dog Whelk</td>
<td>Dibromoindigo</td>
<td>Tyrian Purple</td>
<td>Silks, Shells in Dye Workshop</td>
<td>Ireland</td>
</tr>
<tr>
<td>Kermes vermilio</td>
<td>Kermes</td>
<td>Kermesic Acid</td>
<td>Reds</td>
<td>Silks, Wool Tunic</td>
<td>Norway, York</td>
</tr>
<tr>
<td>Porphyrophora polonica</td>
<td>Polish Cochineal</td>
<td>Carminic Acid</td>
<td>Reds</td>
<td>Silks</td>
<td>Norway, Sweden</td>
</tr>
<tr>
<td>Yellow X: found with indigotin in all but 1 case</td>
<td></td>
<td></td>
<td>Green & Yellow (In all but 1 instance found with indigotin. Dye itself produced a yellow.)</td>
<td>7 Textiles (fiber composition was unspecified)</td>
<td>Norway, Denmark, Dublin</td>
</tr>
</tbody>
</table>

Mordants & Modifiers most likely used

- **Alum** - We have archeological evidence for clubmoss (*Diphasium complanatum, Lycopodium complanatum*) which is a likely source of alum.
- **Iron** - Most likely through the dyepot
- **Copper** - Most likely through bronze dyepots
- **Tannin** - Perhaps from Oak Galls
- **Calcium Carbonate** (Think shells or Coccolithophores.)

This table is a work in progress
Woad
Woad

Modern Chemical Vat

• Substantive dye, no mordant needed
• More common on Norwegian & Danish finds
• Extant textiles show very dark blues as well as well as stripes and diamond outlines (in a twill)
• Has been used to create greens & purples by over-dyeing weld & madder
Woad Oxidizing
Woad Fermentation Vats

Isatis tinctoria Woad

Indigotin

Blues, Greens

Seeds, Wool, Linen, Silk

Norway, Denmark, York, Sweden, Dublin

http://www.tubechop.com/watch/2374088
Weld
Weld

- Either dried or fresh weld is simmered in a pot for about 30 minutes.
- Dye “strikes” so the color won’t change with the amount of time in the pot.
- Adjective dye, mordant with alum
- Has been detected on more extant pieces in recent years (these aren’t on the table yet).
- Soda Ash will brighten the yellow.

<table>
<thead>
<tr>
<th>Reseda luteola</th>
<th>Weld, Dyer’s Rocket</th>
<th>Luteolin</th>
<th>Yellows, Golds</th>
<th>Seeds, Silks</th>
<th>York, Sweden</th>
</tr>
</thead>
</table>

Madder & Bedstraw
Madder & Bedstraw

- Madder can produce a huge range of colors depending on the pH, temperature and time it is soaked. We’re in the middle of experimenting with the best way to get a true red.
- Madder works well as a sun tea, but can also be used in a hot dye-pot. The temp should be kept under 158 °F if going for reds.
- There are two dye chemicals in madder. One produces yellow, one red.
- Adjective dyes, alum mordant
- Jenny Dean suggests using similar methods for Bedstraw.
- More common on Anglo-Scandinavian extant finds

<table>
<thead>
<tr>
<th>Rubia tinctorum</th>
<th>Madder</th>
<th>Alizarin, Pseudopurpurpurin, Purpurin</th>
<th>Oranges, Reds</th>
<th>Plant Remains, Wool, Silks, Linen</th>
<th>Norway, York, Denmark, Sweden, Dublin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galium boreale, Galium verum, Galium aparine</td>
<td>Bedstraw, Lady’s Bedstraw</td>
<td>Alizarin, asperuloside</td>
<td>Reds, Yellows</td>
<td>Wool</td>
<td>Norway, Denmark</td>
</tr>
</tbody>
</table>

Rubia tinctorum

- Madder
- Alizarin, Pseudopurpurpurin, Purpurin
- Oranges, Reds
- Plant Remains, Wool, Silks, Linen
- Norway, York, Denmark, Sweden, Dublin

Galium boreale, *Galium verum,* *Galium aparine*

- Bedstraw, Lady’s Bedstraw
- Alizarin, asperuloside
- Reds, Yellows
- Wool
- Norway, Denmark
Madder
Walnut
Walnut

- When using fresh walnuts, remove the hulls (wear gloves!), boil in water, strain to create dye-bath, and simmer fiber.
- Will stain everything!
- Substantive dye

<table>
<thead>
<tr>
<th>Juglans regia</th>
<th>Walnut</th>
<th>Juglone, Tannin, Plumbagin</th>
<th>Browns, Tans</th>
<th>Wool, Plant Material</th>
<th>Norway, Denmark</th>
</tr>
</thead>
</table>

![Images](image1.jpg) ![Images](image2.jpg) ![Images](image3.jpg)
Lichen
Lichen

- Ammonia Method (AM)- fermentation in 50/50 water/ammonia solution, shake daily to oxygenate. Takes several months.
- Boiling Water Method (BWM)- Lichens added to water & heated
- Substantive Dye
- More common on Hiberno-Norse extant finds

<table>
<thead>
<tr>
<th>Lichen Name</th>
<th>Type</th>
<th>Colors/Uses</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xanthoria parietina</td>
<td>Wall Lichen</td>
<td>Yellows, Tans, Reds, Purples</td>
<td>Dublin</td>
</tr>
<tr>
<td>Rocella tinctoris</td>
<td>Orecin</td>
<td>Wool, Silk</td>
<td></td>
</tr>
<tr>
<td>Ochrolechia tartarea</td>
<td>Orchil Lichens</td>
<td>Purples/Pinks</td>
<td>York, Northern Germany, Dublin</td>
</tr>
</tbody>
</table>
Heather & Broom
Heather & Broom

- Both produce yellow dyes, which are more difficult to detect.
- Flowers yield the dye. Simmer in water.
- Adjective dyes, alum mordant

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Material</th>
<th>Flavonols:</th>
<th>Color</th>
<th>Plant Material</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calluna vulgaris</td>
<td>Heather</td>
<td>Quercetin & Myricetin</td>
<td>Yellow</td>
<td>York</td>
<td></td>
</tr>
<tr>
<td>Genista tinctoria</td>
<td>Broom, Dyer’s Greenwood, Woadwaxen</td>
<td>Genistein</td>
<td>Yellow</td>
<td>York</td>
<td></td>
</tr>
</tbody>
</table>
Polish Cochineal & Kermes
Polish Cochineal & Kermes

- Mostly found on imported silks
- Kermes & Polish Cochineal have slightly different chemical signatures
- Very sensitive to pH
- You can either crush the dried insects, or use them whole. Using them whole requires boiling several times to extract the dye.
- Adjective dye, requires a mordant

<table>
<thead>
<tr>
<th>Kermes vermilio</th>
<th>Kermes</th>
<th>Kermesic Acid</th>
<th>Reds</th>
<th>Silks, Wool Tunic</th>
<th>Norway, York</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porphyrophora polonica</td>
<td>Polish Cochineal</td>
<td>Carminic Acid</td>
<td>Reds</td>
<td>Silks</td>
<td>Norway, Sweden</td>
</tr>
</tbody>
</table>
Dog Whelk

<table>
<thead>
<tr>
<th>Nucella lapillus</th>
<th>Dog Whelk</th>
<th>Dibromoindigo</th>
<th>Tyrian Purple</th>
<th>Silks, Shells in Dye Workshop</th>
<th>Ireland</th>
</tr>
</thead>
</table>

This page discusses the use of *Nucella lapillus* (Dog Whelk) in a dye workshop in Ireland, involving the use of dibromoindigo and tyrian purple.
William Cole in 1685 described in some detail how to use *Nucella lapillus* (his drawing on the left) to obtain the purple dye.

"found this species on the shores of the Bristol Channel, which on cracking and picking off the shell, exhibited a white vein lying transversely in a little furrow or cleft next the head of the fish; which must be digged out with the stiff point of a horse hair pencil being made short and tapering; which must be so formed by reason of the viscous claminess of that white liquor in the vein so that by its stiffness it may drive in the matter into the fine linnen or white silk if placed in the Sun will change into the following colours, i.e., if in the winter about noon, if in the summer an hour or two after sunrise and so much before setting (for in the heat of the day the colours will come on so fast, that the succession of each colour will scarce be distinguishable) next to the first light green will appear a deep green; and in a few minutes this will change into a dull sea green; after which, in a few minutes more, it will alter into a watchet blue; from that in a little time more it will be purplish red; after which, lying an hour or two (supposing the Sun still shining) it will be of a very deep purple red; beyond which the Sun can do no more."

